E OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

PAWAN

SATYAM

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHIT AGGARWAL

SHIKHAR CHAMOLI

GAURAV JHA

SWAPNIL JOSHI

LOKESH BHAT

CSIR-NET-JRF RESULTS 2022

ANNU OF THE

....AR UP15000162 ALANKAR

JAYESTHI RJ11000161

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

THE OPTIMIS

CHANDAN RJ09000159

SAIKHOM JOHNSON

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

JYOTSNA KOHLI UK02000262

SHYAM SUNDAR RJ060000

THE OPTIMIST CLASSES

AN INSTITUTE FOR NET-JRF/GATE/IIT-JAM/JEST/TIFR/M.Sc ENTRANCE EXAMS

CONTACT: 9871044043

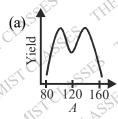
HT-JAM PHYSICS

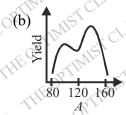
PREVIOUS YEAR QUESTION 2019

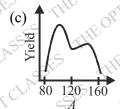
SECTION-A: MCQ (Multiple Choice Questions)

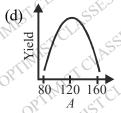
Q.1 - Q.10 carry one mark each.

- 1. The function $f(x) = \frac{8x}{x^2 + 9}$ is continuous everywhere except at
 - (a) x = 0
- (b) $x = \pm 9$
- (c) $x = \pm 9i$
- 2. A classical particle has total energy E. The plot of potential energy (U) as a function of distance (r) from the centre of force located at r = 0 is shown in the figure. Which of the regions are forbidden for the particle?

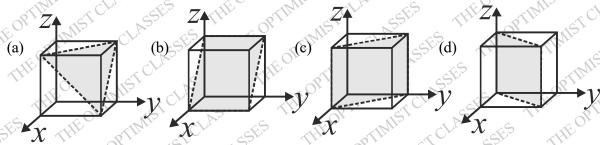

(b) II and IV


(c) I an IV


(d) I and IV (d) I and III



In the thermal neutron induced fission of ${}^{235}U$, the distribution of relative number of the observed fission fragments (Yield) versus mass number (A) is given by



4. Which on of the following crystallographic planes represent (101) Miller indices of a cubic unit cell?

- 5. The Fermi-Dirac distribution function $[n(\varepsilon)]$ is
 - $(k_B \text{ is the Boltzmann constant, } T \text{ is the temperature and } \varepsilon_F \text{ is the Fermi energy)}$

(a)
$$n(\varepsilon) = \frac{1}{\frac{\varepsilon - \varepsilon_F}{e^{k_B T}} - 1}$$

(b)
$$n(\varepsilon) = \frac{1}{\frac{\varepsilon_F - \varepsilon}{k_B T} - 1}$$

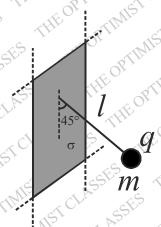
(c)
$$n(\varepsilon) = \frac{1}{e^{\frac{\varepsilon - \varepsilon_F}{k_B T}} + 1}$$

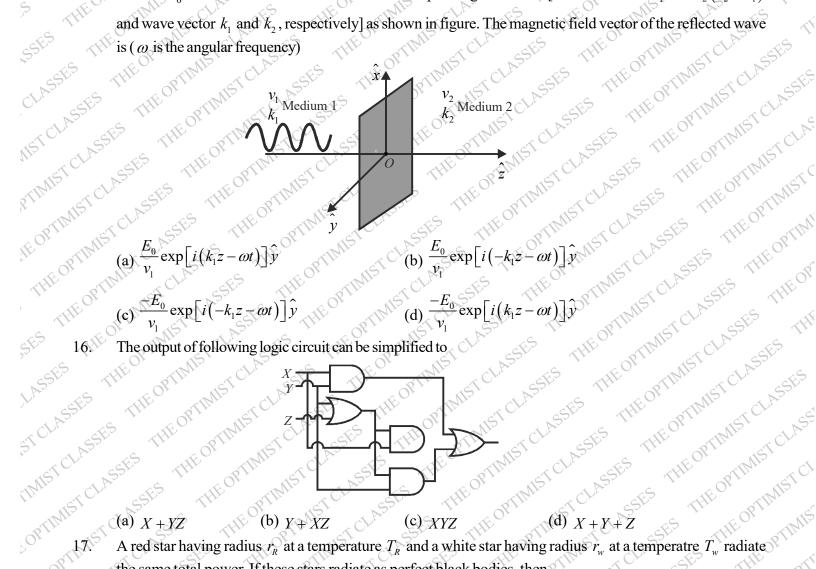
(d)
$$n(\varepsilon) = \frac{1}{\frac{\varepsilon_F - \varepsilon}{k_B T} + 1}$$

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com

M	D' CLAS IS I TEON WISI	CLASS OF THOP? MIST TLASS CS471
6.	If $\phi(x, y, z)$ is a scalar function which satisfies	s the Laplace equation, then the gradient ϕ is
THE OP	(a) Solenoidal and irrotational (c) Irrotational but not solenoidal	s the Laplace equation, then the gradient ϕ is (b) Solenoidal but not irrotational (d) Neither solenoidal nor irrotational at is added to the working substance at constant (c) Temperature (d) Volume
7. THE	In a heat engine based on the Carnot cycle, heat	at is added to the working substance at constant
8.	Isothermal compressibility is given by	(c) reniperature (d) vojunie
SSES	(a) $\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$ (b) $\frac{1}{P} \left(\frac{\partial P}{\partial V} \right)_V$	(d) Neither solenoidal nor irrotational at is added to the working substance at constant (c) Temperature (d) Volume (c) $-\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$ (d) $-\frac{1}{P} \left(\frac{\partial P}{\partial V} \right)_T$ the correct option regarding the resistances of base-emitter
9. 155	For using a transistor as an amplifier, choose	the correct option regarding the resistances of base-emitter
	(R_{BE}) and base-collector (R_{BC}) junctions	CS THE OPTIME MET CLE ASSES THE OPTIME
16)	(a) Both $R_{\rm pg}$ and $R_{\rm pg}$ are very low	(b) Very low $R_{\rm pr}$ and very high $R_{\rm pr}$
MS	(c) Very high R_{BE} and very low R_{BC}	(d) Both R_{BE} and R_{BC} are very high
10.	A unit vector perpendicular to the plane contain	ning $\vec{A} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ is
IE OPTI	(c) Very high R_{BE} and very low R_{BC} A unit vector perpendicular to the plane contain (a) $\frac{1}{\sqrt{26}} \left(-\hat{i} + 3\hat{j} - 4\hat{k} \right)$ (c) $\frac{1}{\sqrt{35}} \left(-\hat{i} + 5\hat{j} - 3\hat{k} \right)$ Q.11 – Q.30 carry two mark each. A thin lens of refractive index $\frac{3}{2}$ is kept inside a is 10 cm, then the focal length inside the liquid in (1) 10.	(b) very low R_{BE} and very high R_{BC} (d) Both R_{BE} and R_{BC} are very high R_{BC} and $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ is (b) $\frac{1}{\sqrt{19}} \left(-\hat{i} + 3\hat{j} - 3\hat{k} \right)$ (d) $\frac{1}{\sqrt{35}} \left(-\hat{i} - 5\hat{j} - 3\hat{k} \right)$
THE	(c) $\frac{1}{\sqrt{35}} \left(-\hat{i} + 5\hat{j} - 3\hat{k} \right)$	(b) $\frac{1}{\sqrt{19}} \left(-\hat{i} + 3\hat{j} - 3\hat{k} \right)$ (d) $\frac{1}{\sqrt{35}} \left(-\hat{i} - 5\hat{j} - 3\hat{k} \right)$
ES '	Q.11 – Q.30 carry two mark each.	OF THIST CLASS TES IT TEOP! THIST
11.00	A thin lens of refractive index $\frac{3}{2}$ is kept inside a	liquid of refractive index $\frac{4}{3}$. If the focal length of the lens in air
LASS	is 10 and the state of a self-to-order in Self-the line Self-	The opposite of the state of th
T.A.	is 10 cm, then the focal length inside the liquid i (a) 10 cm (b) 30 cm	s (c) 40 cm (Primite (d) 50 cm (Life Original (d) 50 cm)
STOR	4 6 4 1 UNY 4 12 TO 1	
12.5°T	The eigenvalues of $\begin{pmatrix} -i & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ are	(c) $2i$, 4 and 8 (d) 0, 4 and 8 (e box of side L , the gorund state energy is given by E_0 . The (c) $3E_0$ (d) $6E_0$
OPTIM	(a) 2, 4 and 6 (b) 2 <i>i</i> , 4 <i>i</i> and 6	(c) 2i, 4 and 8 (d) 0, 4 and 8
13.	For a quantum particle confined inside a cubi	c box of side L , the gorund state energy is given by E_0 . The
THE	energy of the first excited state is	ML TOLAL SES THEOL TIMES TOLAS
TH	(a) $2E_0$ (b) $\sqrt{2}E_0$	(c) $3E_0$ (d) $6E_0$

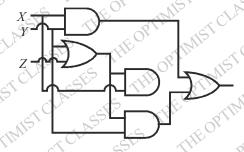

14. A small spherical ball having charge q and mass m, is tied to a thin massless non-conducting string of length l. The other end of the string is fixed to an infinitely extended thin non-conducting sheet with uniform surface charge density σ . Under equilibrium the string makes an angle 45° with the sheet as shown in the figure. Then σ is given by (g is theacceleration due to gravity and ε_0 is the permittivity of free space


(b) $\sqrt{2} \frac{mg\varepsilon_0}{q}$

(c)
$$2\frac{mg\varepsilon_0}{q}$$

(d) $\frac{mg\varepsilon_0}{q\sqrt{2}}$

Consider the normal incidence of a plane electromagnetic wave with electric field given by $\vec{E} = E_0 e^{i(k_1 z - \omega t)\hat{x}}$ over an interface at z = 0 separating two media [wave velocities v_1 and v_2 ($v_2 > v_1$) and wave vector k_1 and k_2 more separating two media [wave velocities v_1 and v_2 ($v_2 > v_1$) and wave vector k_1 and k_2 , respectively] as shown in figure. The magnetic field vector of the reflected wave



(a)
$$\frac{E_0}{v_1} \exp\left[i\left(k_1z - \omega t\right)\right]\hat{y}$$

(b)
$$\frac{E_0}{v_1} \exp[i(-k_1z - \omega t)]\hat{y}$$

(c)
$$\frac{E_0}{v_1} \exp\left[i\left(-k_1 z - \omega t\right)\right] \hat{y}$$

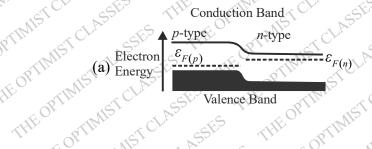
(d)
$$\frac{-E_0}{v_1} \exp\left[i(k_1z - \omega t)\right]\hat{y}$$

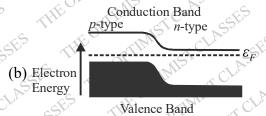
(a)
$$X + YZ$$

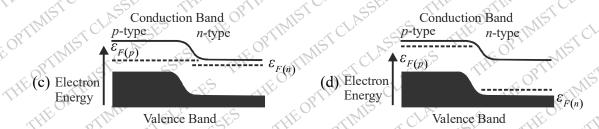
(b)
$$Y + XZ$$

(d)
$$X+Y+Z$$

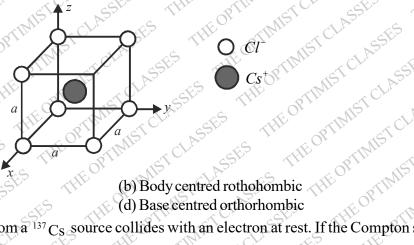
- IHE OPTIMIST CLASSES THE OPTIMIST CLASSES THE OPTIMIST CLASSES (d) X + Y + Z3 radius r_w at a'(a) X + YZA red star h

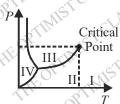

 THE OPTIME (c) the same total power. If these stars radiate as perfect black bodies, then


 (a) $r_R > r_w$ and $T_R > T_w$ (b) r_w


- A red star having radius r_R at a temperature T_R and a white star having radius r_w at a temperatre T_w radiate the same total power. If these stars radiate as perfect black bodies, then

 (a) $r_R > r_w$ and $T_R > T_w$ (b) $r_R < r_w$ and $T_R > T_w$ (c) $r_R > r_w$ and $T_R < T_w$ (d) $r_R < r_w$ and $T_R > T_w$ The mass per unit length of a rod (length of a rod dabout a parameter). (c) $r_R > r_w$ and $T_R < T_w$ rod about a perpendicular-axis passing through the tip of the rod (at x = 0)
 - (a) 10


- (d) 16
- 19. For a forward baised p-n junction diode, which one of the following energy-band diagram is correct Fermi energy)

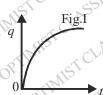

- 20,5 The amount of work done to increases the speed of an electron from c/3 to 2c/3 is $c = 3 \times 10^8$ m/s and rest mass of electron is 0.511 MeV)
 - (a) 56.50 keV
- (b) 143.58 keV
- (c) 168.20 keV
- (d) 511.00 keV
- PIIMIST 21. The location of C_{S}^{+} and C_{l}^{-} ions inside the unit cell of $C_{S}C_{l}$ crystal is shown in the figure. The Bravais lattice of *CsCl* is

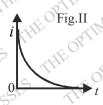
(a) Simple cubic

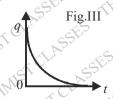
(c) Face centred cubic

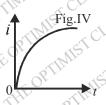
- (d) Base centred orthorhombic
- A γ -ray photon emitted from a 137 Cs source collides with an electron at rest. If the Compton shift of the photon is 3.25×10^{-13} m, then the scattering angle is closest to (Planck's constant $h = 6.626 \times 10^{-34}$ J_s, electron mass $m_e = 9.109 \times 10^{-31}$ kg and velocity of light in free space $c = 3 \times 10^8$ m/s) (b) 60° (d0 90° $(a) 45^{\circ}$ (c) 30°
- During free expansion of an ideal gas under adiabatic condition, the internal energy of the gas.

- (b) Initially decreases and then increases
 (d) Remains constant


 24. In the given phase diagram for a pure substnace regions I, II, III, IV, respectively represent
 (a) Vapor, Gas, Solid, Liquid
 (b) Gas, Vapor, Liquid, solid
 (c) Gas, liquid, Vapor, solid


 25. Light of Light of wavelength λ (in free space) propagates through a dispersive medium with refractive index $n(\lambda) = 1.5 + 0.6\lambda$. The group velocity of a wave travelling inside this medium in units of 10^8 m/s is (a) 1.5 (b) 2.0
- The maximum number of intensity minima that can be observed I the Fraunhofer diffraction pattern of a single slit (width $10 \mu m$) illuminated by a laser beam (wavelength $0.630 \mu m$) will be

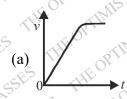

(b) 7

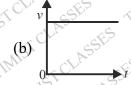

- (c) 12
- During the charging of a capacitor C in a series RC circuit, the typical variations in the magnitude of the charge q(t) deposited on one of the capacitor plates, and the current i(t) in the circuit, respectively are best represented by

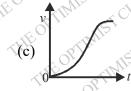
233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

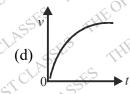
- (a) Figure I and figure II
- (c) Figure III and figure II

- (b) Figure I and figure IV
- (c) Figure III and figure IV
- 28. Which one of the following is an impossible magnetic field \vec{B} ?


(a)
$$\vec{B} = 3x^2z^2\hat{x} - 2xz^3\hat{z}$$


(b)
$$\vec{B} = -2xy\hat{x} + yz^2\hat{y} + \left(2yz - \frac{z^3}{3}\right)\hat{z}$$


(c)
$$\vec{B} = (xz + 4y)\hat{x} - yx^3\hat{y} + (x^3z - \frac{z^2}{2})\hat{z}$$


(d)
$$\vec{B} = -6xz\hat{x} + 3yz^2\hat{y}$$

- 29. If the motion of a particle is described by $x = 5\cos(8\pi t)$, $y = 5\sin(8\pi t)$ and z = 5t, then the trajectory of the particle is
 - (a) Circular
- (b) Elliptical
- (c) Helical
- (d) Spiral
- 30. A ball of mass *m* is falling freely under gravity through a viscous medium in which the drag force is proportional to the instantaneous velocity *v* of the ball. Neglecting the buoyancy force of the medium, which one of the following figures best describes the variation of *v* as a function of time *t*?

SECTION-B: MSQ (Multiple Select Questions)

Q.31 - Q.40 carry two mark each.

- 31. The relation between the nuclear radius (R) and the mass number (A), given by $R = 1.2 A^{1/3}$ fm, implies that
 - (a) The central density of nuclei is independent of A
 - (b) The volume energy per nucleon is a constant
 - (c) The attractive part of te nuclear force has a long range
 - (d) The nuclear force is charge dependent
- 32. Consider an object moving with a velocity \vec{v} in a frame which rotates with a constant angular velocity $\vec{\omega}$. The Coriolis force experienced by the object is
 - (a) Along \vec{v}
 - (b) Along $\vec{\omega}$
 - (c) Perpendicular to both \vec{v} and $\vec{\omega}$
 - (d) always directed towards the axis of rotation
- 33. The gradient of scalar field S(x, y, z) has the following characteristic(s)
 - (a) Line integral of a gradient is path-independent
 - (b) Closed line integral of a gradient is zero
 - (c) Gradient of S is a measure of the maximum rate of change in the field S
 - (d) Gradient of S is scalar quantity
- 34. A thermodynamic system is described by the P, V, T coordinates. Choose the valid expression(s) for the

system

(a)
$$\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial P}{\partial T}\right)_V$$

(b)
$$\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P = \left(\frac{\partial P}{\partial T}\right)_T$$

(c)
$$\left(\frac{\partial V}{\partial T}\right)_{P} \left(\frac{\partial T}{\partial P}\right)_{V} = -\left(\frac{\partial V}{\partial P}\right)$$

$$(d) \left(\frac{\partial V}{\partial T}\right)_{P} \left(\frac{\partial T}{\partial P}\right)_{V} = \left(\frac{\partial V}{\partial P}\right)_{T}$$

- Which of the following statement(s) is/are true?
 - (a) Newton's laws of motion and Maxwell's equations are both invariant under Lorentz transformations
 - (b) Newton's laws of motion and Maxwell's equations are both invariant under Galilean transformations
 - (c) Newton's laws of motion are invariant under Galilean transformations and Maxwell's equations are invariant ant under Lorentz transformations
 - (d) Newton's laws of motion are invariant under Lorenz transformations and Maxwell's equations are invariant under Galilean transformations
- For an under damped harmonic oscillator with velocity v(t)
 - (a) Rate of energy dissipation varies linearly with v(t)
 - (b) Rate of energy dissipation varies as square of v(t)
 - (c) The reduction in the oscillator frequency, compared to the undamped case, is independent of
 - (d) For weak damping, the amplitude decays exponentially to zero
- Out of the following statements, choose the correct option(s) about a perfect conductor.
 - (a) The conductor has an equipotnetial surface
 - (b) Net charge, if any, resides only on the surface of conductor
 - (c) Electric field cannot exist inside the conductor
 - (d) Just outside the conductor, the electric field is always perpendicular to its surface
- In the X-ray diffraction pattern recorded for an simple cubic solid (lattice) parameter a = 1 Å using X-rays of wavelength 1 1, the first order diffraction peak(s) would appear for the

 - (a) (100) planes (b) (112) planes
- (c) (210) planes
- (d) (220) planes
- Consider a classical particle subjected to an attractive inverse-square force field. The total energy of the particle is E and the eccentricity is ε . The particle will follow a parabolic orbit if
 - (a) E > 0 and $\varepsilon = 1$

(b) E < 0 and $\varepsilon < 1$

(c) E = 0 and $\varepsilon = 1$

- (d) E < 0 and $\varepsilon = 1$
- An atomic nucleus X with half-life T_X decays to a nucleus Y, which has half-life T_Y . The condition (s) for secular equilibrium is (are)
 - (a) $T_x = T_y$

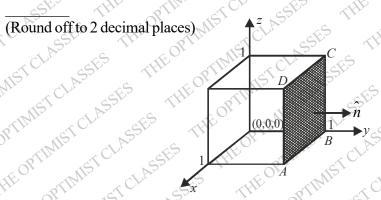
SECTION-C: NAT (Numerical Answer Type)

Q.41 – Q.50 carry one mark each.

In a typical human body, the amount of radioactive ${}^{40}K$ is 3.24×10^{-5} percent of its mass. The activity due to ^{40}K in a human body of mass 70 kg is

(Round off to 2 decimal places)

(Half-life of ${}^{40}K = 3.942 \times 10^{16} \text{ S}$, Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

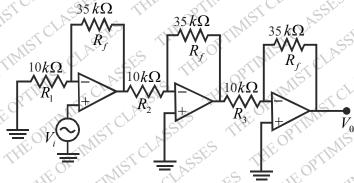

Sodium (Na) exhibits body-centred cubic (BCC) crystal structure with atomic radius 0.186 nm. The lattice parameter of Na uint cell is

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

43. Light of wavelenth 680 nm is incident normally on a diffraction grating having 4000 lines/cm. the diffraction angle (in degrees) corresponding to the third-order maximum is ______ (Round off o 2 decimal places)

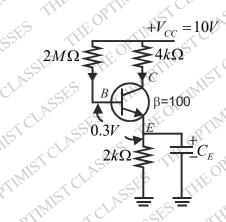
45. An object of 2cm height is placed at a distance of 30cm in front of a concave mirror with radius of curvature 40cm. The height of the image is cm.

46. The flux of the function $\vec{F} = (y^2)\hat{x} + (3xy - z^2)\hat{y} + (4yz)\hat{z}$ passing through the surface ABCD along \hat{n} is

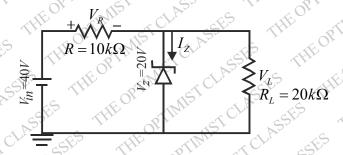

(Assume there is no change in other thermodynamic parameters)

47. The electrostatic energy (in units of $\frac{1}{4\pi\varepsilon_0}J$) of a uniformly charged spherical shell of total charge 5C and radius 4m is _____. (Round off to 3 decimal places)

An infinitely long very thin straight wire carries uniform line charge density $8\pi \times 10^{-2} C/m$. The magnitude of electric displacement vector at a point located 20 mm away from the axis of the wire is C/m^2 .

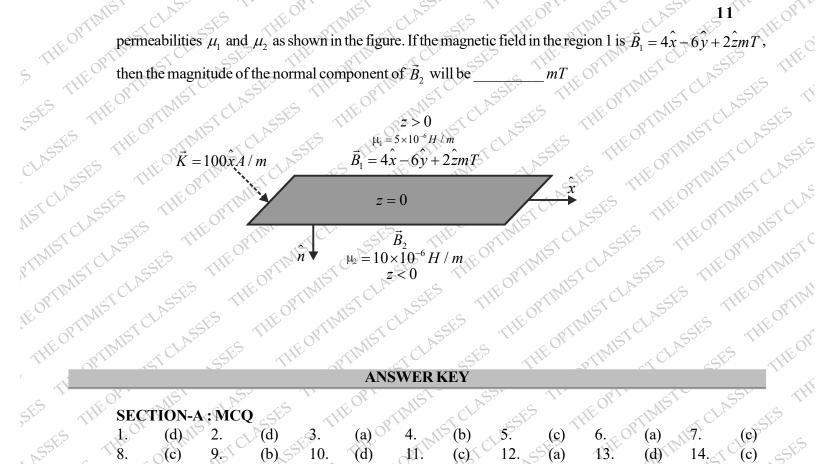

49. The 7^{th} bright fringe in the Young's double slit experiment using a light of wavelength 550nm shifts to the central maxima after covering the two slits with two sheets of different refractive indices n_1 and n_2 but having same thickness $6\mu m$. The value of $|n_1 - n_2|$ is ______. (Round off to 2 decimal places)

50. For the input voltage $V_1(200mV)\sin(400t)$, the amplitude of the output voltage (V_0) of the given OPAMP circuit is V. (Round off to 2 decimal places)



Q.51 – Q.60 carry one mark each.

51. The value of emitter current in the given circuit is μA (Round off to 1 decimal places)



- $\frac{1}{\sum_{0}^{3+i} \left(\overline{z}\right)^{2} dz} |_{0}^{3+i}, \text{ along the line } 3y = x, \text{ where } z = x+iy \text{ is}$ 1 decimal places) $3 \text{ the line } 3y = x \text{$ (Round off to 1 decimal places)
- If the wavelength of $K \alpha_{\perp} X$ -ray line of an element is 1.544 \mathring{A} . Then the atomic number (Z) of the element is (Rydberg constant $R = 1.097 \times 10^7 \,\mathrm{m}^{-1}$ and velocity of light $c = 3 \times 10^8 \,\mathrm{m/s}$)
- A proton is confined within a nucleus of size $10^{-13}\,\mathrm{cm}$. The uncertainty in its velocity is (Planck's constant $h = 6.626 \times 10^{-34} J$ and proton mass $m_P = 1.672 \times 10^{-27} \text{ kg}$)
- $(x_p = 1.0/2 \times 10^{-27} \text{ kg})$ $(x_p) = 1.0/2 \times 10^{-27} \text{ kg}$ Given the wave function of a particle $\psi(x) =$ finding the particle between x = 0 and x =(Round off to 1 decimal places)
- The Zener current I_z for the given circuit is

- If the diameter of the Earth is increased by 4% without changing the mass, then the length of the day is
 - (Take the length of the day before the increment as 24 hours. Assume the Earth to be a sphere with uniform density). (Round off to 2 decimal places)
- A di-atomic gas undergoes adiabatic expansion against the piston of a cylinder. As a result, the temperature of the gas drops from 1150 K to 400 K. The number of moles of the gas required to obtain 2300J of work from the expansion is _____. (The gas constant $R = 8.314 J \text{ mol}^{-1} K^{-1}$ (Round off to 2 decimal places)
- 11E 039 The decimal equivalent of the binary number 110.101 is
 - A surface current $\vec{K} = 100\hat{x}$ A/m flows on the surface z = 0, which separates two media with magnetic

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

SECTION-A: MCQ

ANSWERKEY
C JOH WELL PER LINE
SECTION-A: MCQ SET THE TIME OF SET THE TIME OF SET
1. (d) 2. (d) 3. (a) 4. (b) 5. (c) 6. (a) 7. (c)
8. (c) 9. (b) 10. (d) 11. (c) 12. (a) 13. (d) 14. (c)
15. (c) 16. (b) 17. (c) 18. (b) 19. (a) 20. (b) 21. (a)
22. (c) 23. (d) 24. (b) 25. (b) 26. (d) 27. (a) 28. (d)
51
TOUR SEES THE STIME TOUR SEES THE STIME TOUR SEES THE OF TIMES OF
SECTION-B: MSQ
31. (a,b,d) 32. (c) 33. (a,b,e) 34. (a,c) 35. (c) 36. (b,c,d)
37. (a,b,c,d) 38. (a) 39. (c) 40. (d)
OF MET LESS OF METER ASSIVER OF THE OFFICE ASSIVER OFFICE ASSIVER OF THE OFFICE ASSIVER OFFICE ASSIVER OFFICE ASSIVER OFFICE ASSIVER
SECTION-C: NATURE OF THE SECTION COLUMN SECTION SECTIO

22. (c) 23. (d) 24. (b) 25. (b) 26. (d) 27. (a)	POR
5 29. 1(c) 30. (d) 55 TH THE TOTAL STATE OF THE	
TOLLY SEES THE TIME TOLLY SEES THE OF TIMES THE	TÊ.
SECTION-B: MSQ	Tri
	,c,d) _{<}
37. (a,b,c,d) 38. (a) 39. (c) 40. (d)	<u> </u>
OP 1 1151 ASS TILL OPIL 15TO ASSI TILL OPILL 15TO SS	50
SECTION-C: NAT	.cP
41. (6.0) 42. (0.43) 43. (55°) 44. (4) 45. (4)	46.
47. (3.125) 48. (2) 49. (0.64) 50. (11.03)51. (444.9)	52.
	1

	′ (a.b.av>3/. de)	3300	(a.b.e)	34.	(a.c)	35	$(c)_{<}$	36.	\angle (b.c.d) \angle		Chr
31, 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.	(a,b,c,d)	38.	(a,5,5)	39.5	(c)	40.	(d)	JU.	9) 46. 9) 52. 5) THE OPTIME	TE OP	MS
OPI	ASSI OF THE	PI. US	TO,	SSL	Thi	OP		STU	ASSEL	THE	OPTILL.
SEC	TION-C: NAT	OPTIME	ast Chr	35	C.S.	THE	PIIM	7	The SES	THE	To
THE 27 17 41.	(6.0) 42.	(0.43)	43.	(55°)	44.5	(4)	45.	(4)	46.	(1.17)	TIEOT
11EOF 4715	(3.125) 48.	(2)	49.	(0.64)	50.	(IM)	3)51.8	(444,	.9) 52.	(۱۱۱.۱) ^۲ چ	
op 58	(0.1475) 59	(0.43) (2) (0.31) (6.625)	60	(2)	30.	φ(1)	SV.	(23.9	(3) (STO)	SSE	THE
El THE SOLL	Primisi CLASSI.	(0.023)	OPTID	(-)	Chi	SED	TH	20	TIME	July est	5
ests The	PRIMIST CLASSIC	SES T	HE.O.	TIMIS	CO	A. C	ES	THEO	TIMIS	CLAS	aris '
AS CES THE	FIF OPTIMIST CLAS	25	TEO	y ·	MEL	CLAS	SI CLASES	1,	ê OP I	31	255,
STASS! STI	E OP'IL	ASSI	The	OPI	15		ASSE	TH	OPTIL	JST OF	ASSE
Cor ASSET T	HI OPTIM 15T	SSE	T	The Control of the Co	PIMI	CT C	LIL SC	ES	THE	TIME	Chr.
SES	THE DIMIN	T CLIP	SES	THE		MIS	CLA	SES	FILE OF THE OF	TIMIS	CLA
MIST CLASSES	HE OPTIMETORIMESTO			<i>Y</i>	TE OF	M	I CLASE IMIST CL	AS	65	THE OPTIMES	MEL
WIS'I CLASS	STEOPT	MST	T ASSI	.5	V. C	PILL	MSTO	ASS	St. Th	OPTI	(ST
JPTII ISTO	SEL THE OF	TILL IST	O _Y	SE	THE	PT	Wr.	COL	SSE	THE	TIM
PIMI CICLI	SSES THE	SSES THE SESSES THE STATE OF THE OPTIMIST	T CLIFY	cSE		HE	TOLASE IMISTOL OPTIMIS	50	LAS	ES THE C	PLIMIST
HE OF TIME	CLAN CES TH	EOI TIM	M. C	LAD	SES	TÊ.	Ox	MISI	CLASI	a\$	EOF.
TEOP MIST	CLASS	TE OP I	MST	A	22,		OPI	OPTIMIS	T ASS		OF
Jih OPTH	ISTO ASSET	THE	Tille	STOP	NSSE!	, A	THE	PIII	STOL	SSED	THE
THE		10	1/1/2	LAXM	I NAG	AR [OPTIMITE OPTI		12	, c	
	CALL@ 098710440									om	