OPTIMIST CLASSES IIT-JAM TOPPERS

MANOJ KUMAR SINGH

SOUMIL GIRISH SAHU

BHOOMIJA

AKSHIT AGGARWAL

SHIKHAR CHAMOLI

SWAPNILJOSHI

LOKESH BHATT

VAIBHAV

CSIR-NET-JRF RESUI

ANNUO DL01000308

UP15000162

SAHIL RANA

DASRATH RJ06000682

VIVEK UK01000439

UZAIR AHMED UP02000246

SURYA PRATAP SINGH RJ06000232

HIMANSHU UP10000095

CHANDAN RJ09000159

AJAY SAINI RJ06001744

VIKAS YADAV RJ06001102

SHYAM SUNDAR

CONTACT: 9871044043

PREVIOUS YEAR QUESTION

PHYSICAL SCIENCES

2	1. AMA	vector po	erpendicula	ır to anv	vector that	lies on th	ne plane	defined by	x +	v + z =	: 5 . 18	3
	-D. / .	1	1 25/	(LL)	0/1		1000	THIS	~	V 17	- /	J

(a)
$$\hat{i} + \hat{j}$$

(b)
$$\hat{j} + \hat{k}$$

(c)
$$\hat{i} + \hat{j} + \hat{k}$$

(d)
$$2\hat{i} + 3\hat{j} + 5\hat{k}$$

22. The eigenvalues of the matrix,
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
 are

(a)
$$(1, 4, 9)$$

(a)
$$(1, 4, 9)$$
 (b) $(0, 7, 7)$ (c) $(0, 1, 13)$ (d) $(0, 0, 14)$

23. The first few terms in the Laurent series for $\frac{1}{(z-1)(z-2)}$ in the region $1 \le |z| \le 2$ and around $z = 1$ is

(a) $\frac{1}{2} \left[1 + z + z^2 + z^3 + \dots \right] \left[1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots \right]$

(a)
$$\frac{1}{2} \left[1 + z + z^2 + z^3 + \dots \right] \left[1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots \right]$$

(b)
$$\frac{1}{1-z} + z - (1-z)^2 + (1-z)^3 + \dots$$

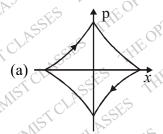
(c)
$$\frac{1}{z^2} \left[1 + \frac{1}{z} + \frac{1}{z^2} + \dots \right] \left[1 + \frac{2}{z} + \frac{4}{z^2} + \dots \right]$$

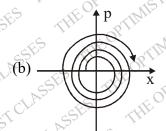
(d)
$$2(z-1)+5(z-1)^z+7(z-1)^3+...$$

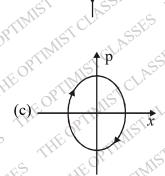
- The radioactive decay of a certain material satisfies Possion statistics with a mean rate of χ per second, what should be the minimum duration of counting in seconds so that the relative error is less than 1%?
 - (a) 100/λ
- (c) $10^4 / \lambda$
- Let $u(x,y) = x + \frac{1}{2}(x^2 + y^2)$ be the real part of an analytic function of f(z) of the complex variable z = x + iy. The imaginary part of f(z) is
- (b) xy
- (c) y

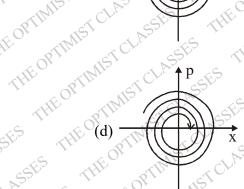
(d)
$$y^2 - x^2$$

(a) y + xy $26. \qquad T$ Let y(x) be a continuous real function in the range 0 and 2π , satisfying the inhomogeneous differential equation:


233, FIRST FLOOR, LAXMI NAGAR DELHI-110092


CALL@ 09871044043 www.theoptimistclasses.com Email: info@theoptimistclasses.com


 $\sin x \frac{d^{2y}}{dx} + \cos x \frac{dy}{dx} = \delta \left(x - \frac{\pi}{2} \right).$ The value of dy/dx at the point $x = \pi/2$


(a) is continuous

- (b) has a discontinuity of 3
- (c) has a discontinuity of 1/3
- (d) has a discontinuity of 1
- A ball is picked at random from one of two boxes that contain 2 black and 3 white and 3 black and 4 white balls respectively. What is the probability that it is a line of two boxes that contain 2 black and 3 white and 3 black and 4 white balls respectively. white balls respectively. What is the probability that it is white?
 - (a) 34/70
- (b) 41/70
- (c) 36/70
- (d) 29/70
- The bob of a simple pendulum, which undergoes small oscillations, is immersed in water. Which of the following figures best represents the phase space diagram for the pendulum?

- Two events, seperated by a (spatial) distance 9×10^9 m, are simultaneous in one inertial frame. The time interval between these two events in a frame moving with a constant speed 0.8c (where the speed of light $c = 3 \times 10^8$ m/s) is:

- If the Lagrangian of a particle moving in one dimension is given by $L = \frac{x^2}{2x} V(x)$, the Hamiltonian is:

 (a) $\frac{1}{2}xp^2 + V(x)$ (b) $\frac{\dot{x}^2}{2x} + V(x)$ (c) $\frac{1}{2}\dot{x}^2 + V(x)$ (d) $\frac{p^2}{2x} + V(x)$

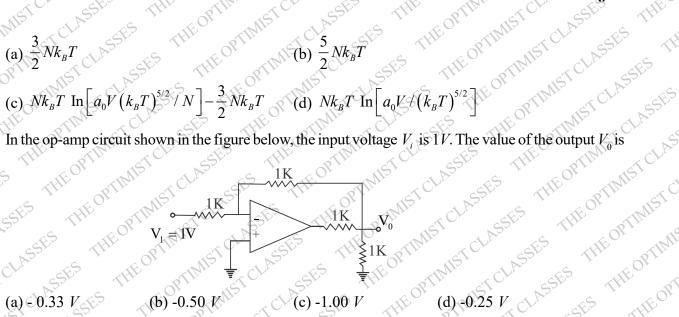
- A horizontal circular platform rotates with a constant angular velocity Ω directed vertically upwards. A person seated at the centre shoots a bullet of mass 'm' horizontally with speed 'v'. The accelertion of the bullet, in the reference frame of the shooter, is
 - (a) $2v\Omega$ to his right (b) $2v\Omega$ to his left
- (c) $v\Omega$ to his right
- (d) $v\Omega$ to his left
- The magnetic field corresponding to the vector potential $\vec{A} = \frac{1}{2}\vec{F} \times \vec{r} + \frac{10}{r^3}\vec{r}$ where \vec{F} is a constant vector, is

 (a) \vec{F} (b) $-\vec{F}$ (c) $\vec{F} + \frac{30}{r^4}\vec{r}$ (d) \vec{F} An electromagnetic wave is incident on a vector circums.

- The photon r^4 r^4 An electromagnetic wave is incident on a water-air interface. The phase of the perpendicular compo

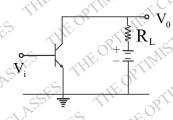
nent of the electric field, E_{\perp} , of the reflected wave into the water is found to remain the same for all
angles of incidence. The phase of the magnetic field H.
(a) does not change (b) changes by $3\pi/2$ (c) changes by $\pi/2$ (d) changes by $\pi/2$ The magnetic field at a distance R from a long straight wire carrying a steady current I is proportional
(a) IR (b) I/R^2 (c) I^2/R^2 (d) $I \neq R$
35. The component along an arbitrary direction \hat{n} , with direction cosines (n_x, n_y, n_z) , of the spin of a spin
 (a) does not change (b) changes by 3π/2 (c) changes by π/2 (d) changes by π 34. The magnetic field at a distance R from a long straight wire carrying a steady current I is proportional to (a) IR (b) I/R² (c) I²/R² (d) I/R 35. The component along an arbitrary direction n̂, with direction cosines (nx, ny, nz), of the spin of a spin -1/2 particle is measured. The result is: (a) 0 (b) ± n/2 nx (c) ± n/2 (nx + ny + nz) (d) ± n/2 36. A particle of mass m is in a cubic box of size a. The potential inside the box (0 ≤ x < a, 0 ≤ y < a, 0 ≤ z < a) is zero and infinite outside. If the particle is in an eigenstate of energy
(a) 0 (b) $\pm \frac{\hbar}{2} n_x$ (c) $\pm \frac{\hbar}{2} (n_x + n_y + n_z)$ (d) $\pm \frac{\hbar}{2}$
36. A particle of mass m is in a cubic box of size a . The potential inside the box
$(0 \le x < a, 0 \le y < a, 0 \le z < a)$ is zero and infinite outside. If the particle is in an eigenstate of energy
$E = \frac{14\pi^2 h^2}{2ma^2}$, its wave function is:
(a) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{3\pi x}{a} \sin \frac{5\pi y}{a} \sin \frac{6\pi z}{a}$ (b) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{7\pi x}{a} \sin \frac{4\pi y}{a} \sin \frac{3\pi z}{a}$ (c) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{4\pi x}{a} \sin \frac{8\pi y}{a} \sin \frac{2\pi z}{a}$ (d) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin \frac{\pi x}{a} \sin \frac{2\pi y}{a} \sin \frac{3\pi z}{a}$ 37. Let $\Psi_{n\ell m}$ denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential $V(r)$. The wavefunction $\Psi = \frac{1}{4} \left[\Psi_{210} + \sqrt{5}\Psi_{21-1} + \sqrt{10}\Psi_{213}\right]$ is an eigenfunction only of (a) H, L^2 and L_z (b) H and L_z (c) H and L^2 (d) L^2 and L_z 38. The commutator $\left[x^2, p^2\right]$ is (a) $2 i\hbar xp$ (b) $2i\hbar (xp + px)$ (c) $2i\hbar px$ (d) $2i\hbar (xp - px)$ 39. Consider a system of non-interacting particles in d dimensions obeying the dispersion relation $\varepsilon = Ak^s$, where ε is the energy, k is the wavevector, 's' is an integer and A a constant. The density of states, $N(\varepsilon)$ is
(c) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin\frac{4\pi x}{a} \sin\frac{8\pi y}{a} \sin\frac{2\pi z}{a}$ (d) $\psi = \left(\frac{2}{a}\right)^{3/2} \sin\frac{\pi x}{a} \sin\frac{2\pi y}{a} \sin\frac{3\pi z}{a}$
37. Let $\Psi_{n\ell m}$ denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential $V(r)$. The
wavefunction $\Psi = \frac{1}{4} \left[\Psi_{210} + \sqrt{5} \Psi_{21-1} + \sqrt{10} \Psi_{213} \right]$ is an eigenfunction only of
(a) H, L^2 and L_z (b) H and L_z (c) H and L^2 (d) L^2 and L_z
38. The commutator $[x^2, p^2]$ is $[x^2, p^2]$ is
(a) $2i\hbar xp$ (b) $2i\hbar(xp+px)$ (c) $2i\hbar px$ (d) $2i\hbar(xp-px)$
39. Consider a system of non-interacting particles in d dimensions obeying the dispersion relation $\varepsilon = Ak^s$, where
ε is the energy, k is the wavevector, 's' is an integer and A a constant. The density of states, $N(\varepsilon)$ is
proportional to 15th Safety 17th Printing 15th Safety 17th Printing 15th Safety
(a) $\frac{d}{c^{d-1}}$ (b) $\frac{d}{c^{s+1}}$ (c) $\frac{d}{c^{s+1}}$ (d) $\frac{s}{c^{d-s}}$
40. The number of ways in which n identical bosons can be distributed in two energy levels, is
(a) $N+1$ (b) $N(N-1)/2$ (c) $N(N+1)/2$ (d) N
41. The free energy of a gas N particles in a volume V and at a temperature T is
 Consider a system of non-interacting particles in d dimensions obeying the dispersion relation ε = Ak^s, where ε is the energy, k is the wavevector, 's' is an integer and A a constant. The density of states, N(ε) is proportional to (a) ε¹/_d (b) ε⁴/_s (c) ε⁴/_s (c) ε⁴/_s (d) ε⁵/_d 40. The number of ways in which n identical bosons can be distributed in two energy levels, is (a) N+1 (b) N(N-1)/2 (c) N(N+1)/2 (d) N 41. The free energy of a gas N particles in a volume V and at a temperature T is F = k_BT In [a₀V(k_BT)^{5/2}/N] where a₀ is a constant and k_B denotes the Boltzmann constant. The internal energy of gas is

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

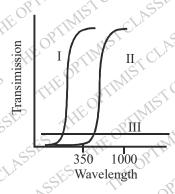

(a)
$$\frac{3}{2}Nk_BT$$

(b)
$$\frac{5}{2}Nk_BT$$

(c)
$$Nk_BT \ln \left[a_0V \left(k_BT \right)^{5/2} / N \right] - \frac{3}{2} Nk_BT$$


(d)
$$Nk_BT \ln \left[a_0V t \left(k_BT\right)^{5/2} \right]$$

(c) $Nk_BT \ln \left[a_0V \left(k_BT \right)^{5/2} / N \right] - \frac{3}{2}Nk_BT$ (d) $Nk_BT \ln \left[a_0V + \left(k_BT \right)^{5/2} \right]$ In the op-amp circuit shown in the figure below, the input voltage.



- (a) = 0.33 V SES
- (c) -1.00 V
- (d) -0.25 V An LED operates at 1.5 V and 5 mA in forward bias. Assuming an 80% external efficiency of the LED, how many photons are emitted per second?

- The transistor in the given circuit has $h_{fe}=35\Omega$ and $h_{ie}=1000\Omega$. If the load resistance $R_L=1000\Omega$, the voltage and current gain are, respectively. (a) 5.0×10¹⁶

- The experimentally measured transmission spectra of metal, insulator and semiconductor thin films are shown in the figure. It can be inferred that I II and III compared to the semiconductor than films are

- (b) Semiconductor, metal and insulator
- (c) Metal, semiconductor and insulator
- (d) Insulator, metal and semiconductor

Æ	OPTIL	WILST CLASSES THE OPTIME WIST CLE (SSES THE OPTIME MST CLE ASSES TO
Th	46.0P	The eigenvalues of the antisymmetric matrix $A = \begin{bmatrix} n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix}$, where n_1 , n_2 and n_3 are the compo-
SES	5 47.5	The eigenvalues of the antisymmetric matrix $A = \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$, where n_1 , n_2 and n_3 are the components of a unit vector, are (a) 0 , i , $-i$ (b) 0 , 1 , -1 (c) 0 , $1+i$, $-1-i$ (d) 0 , 0 , 0 Which of the following limits exists? (a) $\lim_{N\to\infty} \left(\sum_{m=1}^N \frac{1}{m} + \ln N\right)$ (b) $\lim_{N\to\infty} \left(\sum_{m=1}^N \frac{1}{m} - \ln N\right)$ (c) $\lim_{N\to\infty} \left(\sum_{m=1}^N \frac{1}{m} - \ln N\right)$ (d) $\lim_{N\to\infty} \sum_{m=1}^N \frac{1}{m}$ A bag contains many balls, each with a number painted on it. There are exactly n balls which have the number n (namley one ball with 1, two balls with 2, and so on until N balls with N on them). An experiment consists of choosing a ball at random nothing the number on it and returning it to the bag
STOLA	CLASSI	(a) $\lim_{N \to \infty} \left(\sum_{m=1}^{N} \frac{1}{m} + \ln N \right)$ (b) $\lim_{N \to \infty} \left(\sum_{m=1}^{N} \frac{1}{m} - \ln N \right)$
TIMIS	MST CLA	(c) $\lim_{N \to \infty} \left(\sum_{m=1}^{N} \frac{1}{\sqrt{m}} - \ln N \right)$ (d) $\lim_{N \to \infty} \sum_{m=1}^{N} \frac{1}{m}$
TE		A bag contains many balls, each with a number painted on it. There are exactly n balls which have the number n (namley one ball with 1, two balls with 2, and so on until N balls with N on them). An experiment consists of choosing a ball at random, nothing the number on it and returning it to the bag. If the experiment is repeated a large number of times, the average value of the number will tend to
ES T	IEOF THEO	experiment consists of choosing a ball at random, nothing the number on it and returning it to the bag. If the experiment is repeated a large number of times, the average value of the number will tend to (a) $\frac{2N+1}{3}$ (b) $\frac{N}{2}$ (c) $\frac{N+1}{2}$ (d) $\frac{N(N+1)}{2}$ The value of the integral $\int_{-\pi}^{\infty} \frac{1}{t^2 - R^2} \cos\left(\frac{\pi t}{2R}\right) dt$ is (a) $-2\pi/R$ (b) $-\pi/R$ (c) π/R (d) $2\pi/R$ The Poisson bracket $\{ r , p \}$ has the value (a) $ \vec{r} \vec{p} $ (b) $\hat{r} \cdot \hat{p}$ (c) 3 (d) 1 Consider the motion of a classical particle in a one dimensional double-well potential $V(x) = \frac{1}{4}(x^2 - 2)^2$. If the particle is displaced infinitesimally from the minimum the positive x-axis
ASSES	49.	The value of the integral $\int_{-\infty}^{\infty} \frac{1}{t^2 - R^2} \cos\left(\frac{\pi t}{2R}\right) dt$ is
CLA	SV	(a) $-2\pi/R$ (b) $-\pi/R$ (c) π/R (d) $2\pi/R$
	50.	The Poisson bracket $\{ r , p \}$ has the value
MIST	ST.	(a) $ \vec{r} \vec{p} $ (b) $\hat{r}.\hat{p}$ (c) 3
PIMI	,31.	Consider the motion of a classical particle in a one dimensional double-well potential
Jr Pr	IMIZ	$V(x) = \frac{1}{4}(x^2 - 2)^2$. If the particle is displaced infinitesimally from the minimum the positive x-axis
HE OF	OPTIMI	(and friction is neglected), then (a) the particle will execute simple harmonic motion in the right well with an angular frequency $\omega = \sqrt{2}$
è	THEOI	(b) the particle will execute simple harmonic motion in the right well with an angular frequency $\omega = 2$
SSES CLASS	THI \$2.	(c) the particle will switch between the right and left wells(d) the particle will approach the bottom of the right well and settle thereWhat is the proper time interval between the occurence of two events if in one inertial frame the
CLAS.	ASSES	events are separated by 7.5×10^5 m and occur 6.5 s apart? (a) 6.50 s (b) 6.00 s (c) 5.75 s (d) 5.00 s
15T CL	53. 55	A free particle described by a plane wave and moving in the positive z-direction undergoes scattering
TIMIS	Cor	by a potential $V(r) = \begin{cases} V_0 & \text{if } r \leq R \\ 0 & \text{if } r > R \end{cases}$ If V_0 is changes to $2V_0$, keeping R fixed, then the differential
E OPT	MISTAIS	7 10 10 10 10 10 10 10 10 10 10 10 10 10
THE	OP I	scattering by a potential If is changes to , keeping R fixed, then the differential scattering cross-section, in the Born approximation. (a) increases to four times the original value (b) increases to twice the original value
	~ V.	

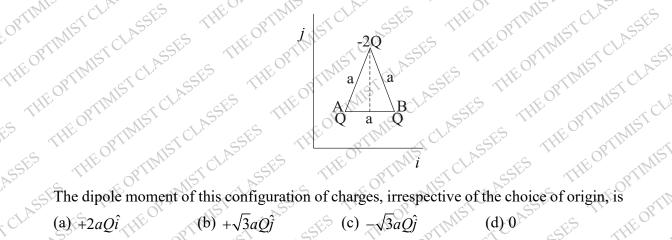
- 54. A variational calculation is done with the normalized trial wavefunction $\psi(x) = \frac{\sqrt{15}}{4a^{5/2}}(a^2 x^2)$ for the one dimensional potential well $V(x) = \begin{cases} 0 & \text{if } |x| \le a \\ \approx & \text{if } |x| > a \end{cases}$ The ground state energy is estimated to be

 (a) $\frac{5h^2}{3ma^2}$ (b) $\frac{3h^2}{2ma^2}$ (c) $\frac{3h^2}{5ma^2}$ (d) $\frac{5h^2}{4ma^2}$ 55. A particle in one-dimension is in the potential $V(x) = \begin{cases} e^{x} & \text{if } x < 0 \\ 0 & \text{if } x > \ell \end{cases}$ If there is at least one bound state, the minimum depth of $x > \ell$.

 (a) $\frac{h^2\pi^2}{8m\ell^2}$

$$V(x) = \begin{cases} 0 & if \ |x| \le a \\ \infty & if \ |x| > a \end{cases}$$

$$V(x) = \begin{cases} \infty & \text{if } x < 0 \\ -V_0 & \text{if } 0 \le x \le \ell \\ 0 & \text{if } x > \ell \end{cases}$$


- Lat is polar coording (c). $(x) = \begin{cases} -V_0 & \text{if } 0 \le x \le \ell \\ 0 & \text{if } x > \ell \end{cases}$ If there is at least one bound state, the minimum depth of the potential is

 (a) $\frac{h^2 \pi^2}{8m\ell^2}$ (b) $\frac{h^2 \pi^2}{2m\ell^2}$ (c) $\frac{2h^2 \pi^2}{8m\ell^2}$

- 356. Which of the following is a self-adjoint operator in the spherical polar coordinate system (r, θ, φ) ?

 (a) $\frac{h^2 \pi^2}{\sin^2 \theta} \frac{\partial}{\partial \theta}$ (b) $-i\hbar \frac{\partial}{\partial \theta}$ (c) $\frac{i\hbar}{\sin \theta} \frac{\partial}{\partial \theta}$ (d) $-i\hbar \sin \theta \frac{\partial}{\partial \theta}$ 57. Which of the following quantities is Lorentz invariant?

 (a) $|E \times B|^2$ (b) $|E|^2 |B|^2$ (c) $|E|^2 + |B|^2$ (d) $|E|^2 |B|^2$ 58. Charges Q, Q and -2Q are placed on the vertices of an equilateral triangle ABC of sides of length a, as shown in the figure

- The vector potential \vec{A} due to a magnetic moment 'm' at a point 'r' is given by $\vec{A} = \frac{\vec{m} \times \vec{r}}{r^3}$. If \vec{m} is directed along the positive z-axis, the x-component of the magnetic field, at the point \vec{r} , is

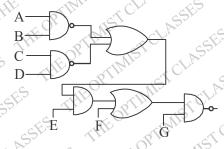
(a)
$$\frac{3 \text{ myz}}{r^5}$$

(b)
$$-\frac{3 \text{ mxy}}{r^5}$$

(c)
$$\frac{3 \text{mx}}{r^5}$$

(d)
$$\frac{3 \operatorname{m} \left(z^2 - xy\right)}{\operatorname{r}^5}$$

- A system has two normal modes of vibration, with frequencies ω_1 and $\omega_2 = 2\omega_1$. What is the probability that at temperature T, the system has an energy less than $4\hbar\omega_1$? [In the following $x=e^{-\beta\hbar\omega}$ and Z is the partition function]


(b) $x^{3/2}(1+x+x^2)/Z$

- (d) $x^{3/2} (1 + x + 2x^2) / Z$
- The magnetization M of a ferromagnet, as a function of the temperature T and magnetic field H, is described by the equation $M = \tan h \left(\frac{T_c}{T} M + \frac{H}{T} \right)$. In these units, the zero-field magnetic susceptibility in terms of M(0) = M(H = 0) is given by
 - (a) $\frac{1-M^2(0)}{T-T_c(1-M^2(0))}$ (b) $\frac{1-M^2(0)}{T-T_c}$ (c) $\frac{1-M^2(0)}{T+T_c}$ (d) $\frac{1-M^2(0)}{T}$
- Bose condensation occurs in liquid He⁴ kept at ambient pressure at 2.17 K. At which temperature will Bose condensation occur in He⁴ gaseous state, the density of which is 1000 times smaller than that of liquid He⁴? (Assume that it is a perfect Bose gas)
 - (a) 2.17 mK
- (b) 21.7 mK
- (c) $21.7 \mu K$
- (d) $2.17 \mu K$
- Consider black body radiation contained in a cavity whose walls are at temperature T. The radiation is in equilibrium with the walls of the cavity. If the temperature of the walls is increased to 2T and the radiation is allowed to come to equilibrium at the new temperature, the entropy of the radiation increases by a factor of
 - (a) 2

- The output 0, of the given circuit in cases I and II, where

Case-I: A, B = 1; C, D = 0; E, F = 1 and G = 0

Case-II: A, B = 0; C, D = 0; E, F = 0 and G = 1 are respectively

- A resistance strain gauge is fastened to a steel fixture and subjected to a stress of 1000 kg/m^2 . If the gauge factor is 3 and the modulus of elasticity of steel is 2×10^{10} kg/m², then the fractional change in resistance of the strain gauge due to the applied stress is:

(Note: The gauge factor is defined as the ratio of the fractional change in resistance to the fractional change in length.)

233, FIRST FLOOR, LAXMI NAGAR DELHI-110092

TIMI	STOLAS SES THEOR STIME TOLASS SES THEOR STIMES TOLASS SES	
Oh ,	(a) 1.5×10^{-7} (b) 3.0×10^{-7} (c) 0.16×10^{-10} (d) 0.5×10^{-7} Consider a sinusoidal waveform of amplitude 1V and frequency f . Starting from an arbitrary initial time	1
66.	Consider a sinusoidal waveform of amplitude $1V$ and frequency f_0 . Starting from an arbitrary initial time,	, th
jir Tê	waveform is sampled at intervals of $1/(2f_0)$. If the corresponding Fourier spectrum peaks at a frequency	ÿ ,
STILL	and an amplitude \overline{A} , then	<u></u>
, s	and an amplitude \overline{A} , then (a) $\overline{f} = 2f_0$ and $\overline{A} = 1V$ (b) $\overline{f} = f_0$ and $0 \le \overline{A} \le 1V$	S AL
SSE	(c) $f = 0$ and $A = 1V$ (d) $f - \frac{1}{2}$ and $A = \sqrt{2}V$	5
67.	The first absorption spectrum of ¹² C ¹⁶ O is at 3.842 cm ⁻¹ while that of ¹³ C ¹⁶ O is at 3.673 cm ⁻¹ . Tratio of their moments of inertia is	The
MST CL	(a) 1.831 (b) 1.280 (c) 1.040 (d) 1.038	OF
68.	The spin-orbit interaction in an atom is given by $H = a \vec{L} \cdot \vec{S}$, where L and S denote the orbital and	,
PTIL	spin angular moment, respectively of electron. The splitting between the levels ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ is:	H
IE OP'II	(a) $\frac{3}{2}a\hbar^2$ (b) $\frac{1}{2}a\hbar^2$ (c) $3a\hbar^2$ (d) $\frac{5}{2}a\hbar^2$	S
69.	The spectral line corresponding to an atomic transition from $J = 1$ to $J = 0$ states splits in a magnetic field	dç
	1kG into three components seperated by $1.6 \times 10^{-3} \text{Å}$. If the zero field spectral line corresponding to 184	9
SES	, what is the g-factor corresponding to the $J=1$ state? (You may use $\frac{hc}{\mu_0} \approx 2 \times 10^4$ cm.)	Ó
ASSE	(a) 2 (b) 3/2 (c) 1 (d) 1/2 (H)	
70.	The energy required to create a lattice vacancy in a crystal is equal to 1 eV. The ratio of the number	>
TOLK	densities of vacancies $n(1200 \text{K}) / n(300 \text{K})$, when the cyrstal is at equilibrium at 1200 Kand 300 I	ζ,
71.	respectively is approximately (a) exp (-30) (b) exp (-15) (c) exp (15) (d) exp (30) The dispersion relation of phonons in a solid is given by $\omega^2(k) = \omega_0^2 \left(3 - \cos k_x, a - \cos k_y a - \cos k_z a\right)$ The velocity of the phonons at large wavelength is	,R '
TIM	$\omega^{2}(k) = \omega_{0}^{2}(3 - \cos k_{x}, a - \cos k_{z}a - \cos k_{z}a)$	13.
OR	The dispersion relation of phonons in a solid is given by $\omega^2(k) = \omega_0^2 \left(3 - \cos k_x, a - \cos k_y a - \cos k_z a\right)$ The velocity of the phonons at large wavelength is	
0		

(a)
$$\omega_0 a / \sqrt{3}$$

(b)
$$\omega_0 a$$

(c)
$$\sqrt{3}\omega_0 a$$

(d)
$$\omega_0 a / \sqrt{2}$$

The velocity of the phonons at large wavelength is

(a) $\omega_0 a / \sqrt{3}$ (b) $\omega_0 a$ (c) $\sqrt{3}\omega_0 a$ (d) $\omega_0 a / \sqrt{2}$ 72. Consider an electron in a box of length L with periodic boundary condition $\psi(x) = \psi(x+L)$. If the electron is in the $\psi_k(x) = \frac{1}{\sqrt{L}}e^{ihx}$ with energy $\varepsilon_k = \frac{\hbar^2 k^2}{2m}$, what is the correction to its energy, to second order of perturbation theory, when it is subjected to weak periodic potential $V(x) = V_0 \cos gx$, where g is an intergal multiple of the $2\pi/L$?

(a) $V_0^2 \varepsilon_g / \varepsilon_k^2$ (b) $-\frac{mV_0^2}{2\hbar^2} \left(\frac{1}{g^2 + 2kg} + \frac{1}{g^2 - 2kg}\right)$ (c) $V_0^2 \left(\varepsilon_k - \varepsilon_g\right) / \varepsilon_g^2$ (d) $V_0^2 / \left(\varepsilon_k = \varepsilon_g\right)$

(a)
$$V_0^2 \varepsilon_g / \varepsilon_k^2$$

(b)
$$-\frac{mV_0^2}{2\hbar^2} \left(\frac{1}{g^2 + 2kg} + \frac{1}{g^2 - 2kg} \right)$$

(c)
$$V_0^2 \left(\varepsilon_k - \varepsilon_g\right) / \varepsilon_g^2$$

(d)
$$V_0^2 / (\varepsilon_k = \varepsilon_g)$$

- 73. The ground state of ${}^{207}_{82}$ Pb nucleus has spin-parity $J^P = \frac{1}{2}$, while the first excited state has $J^P = \frac{5}{2}$. The electromagnetic radiation emitted when the nucleus well

- Let E2Let E3Let E4Let The dominant interactions underlying the following processes
- electromagnetic radiation emitted when the nucleus makes a transition from the first excited state to the ground state are
 (a) E2 and E3
 (b) M2 and E3
 (c) E2 and M3
 (d) M2 and M3
 The dominant interactions underlying the following processes $A, K^- + p \to \Sigma^- + \pi^+, B, \mu^- + \mu^+ \to K + K^+, C, \Sigma^+ \to p + \pi^0 \text{ are}$ (a) A: strong, B: electromagnetic and C: weak
 (b) A: strong, B: weak and C: weak
 (c) A: weak, B: electromagnetic and C: strong
 (d) A: weak, B: electromagnetic and C: weak weak, B: electromagnetic and C: strong
 (d) A: weak, B: electromagnetic and C: weak

 75. If a Higgs boson of mass m 75. If a Higgs boson of mass m_H with a speed $\beta = 1$ photon pair is [Note: The invariant mass of a system of two particles, with four-momenta p_1 and p_2 is $(p_1 + p_2)^2$]

 (a) βm_H (b) m_H (c) $m_H/\sqrt{1-\beta^2}$ (d) $\beta m_H/\sqrt{1-\alpha^2}$

- p_1 and p_2 (d) $\beta m_H / \sqrt{1 \beta^2}$

LASSES ES		MS (AS	Al	NSWER KEY	AD. C	26. (d) 33. (d) 40. (a) 47. (b) 54. (d)	(15)	57
JAST SEES	21. (c) 28. (d) 35. (d)	TIME CLA		TE TAIL	CLA C	SEOT	MIS	CLASS
MISTOLASSE.	21. (c)	22. (d)	(6)	- 1. (25. (a) 55	26. (d)	27. (b)	CLASSE
STO ASSI	28. (d)	22. (d) 29. (b) 36. (d) 43. (d)	30. (a)	(31. (a)	32. (a)	33. (d)	34. (d)	CICLI
CV		36. (d) 43. (d)	37. (c)	38. (b)	39. (c)	40. (a)	41. (b)	IIS CLI
MIS CLA	42. (c) 49. (b)	43. (d) 50. (b)	5 44. (a) 5	SE2 (1)	53. (a)	54. (d)	48. (a)	MSI
	56 (a)	57 (b)	58 (c)	59. (c)	60. (d)	61.(a)	62. (b)	Filly ST
OPTIMIST CLA	56. (c) 63. (c) 70 (d)	64. (d)	65. (a)	66. (d)	53. (a) 60. (d) 67. (c)	68. (a)	69. (c)	IST CLA
		57. (b) 64. (d) 71. (d)	72. (b)	73. (c)	74. (a)	75. (b)	45	E OPTIMIST
OPTIMIST.	70. (d)		58. (c) 65. (a) 72. (b)	FIMIST CLASSES	67. (c) 74. (a)	54. (d) 61. (a) 68. (a) 75. (b)	52, 7,	EOI OPTH
II OP I	MST	ASSI G TH	OPTI	STO ASSI	This	PTIL 1510s	ASSET	THE
TELL	PILLY 1SI	SSER	THE PIN	CT Chr.	SES THE	PIMI T	Clir asks	
S THE		of Cliff SES	THEO	CIMIL CLA	SES	XY		SES T
SSES		ILASSI TIL ST.CLASSES FIMIST CLASSES FIMIST CLASSES FORTIMIST CLASSES	ES TEOR	THE OPTIMIST CLAS	JLASSES TO	TE OP	CLASSISIES CLASSIS ITMIST CLASS ITMIST CLASS ITMIST CLASS	P' \\
353	OPI	MST ASS		OPTI MST	ASSE	The OPTH	NST C	SSE
ASSE	THE OP	Lilly 12 Cr	SSEE THE	C PIIM	STOL SSE	THE	TIME CT C	Lir SEE
C C C C C C C C C C C C C C C C C C C		ITHE OPTIMIST CLASS	SES	THE	FIMIST CLASSES FIMIST CLASSES FIMIST CLASSES	SES THE	TIMIS	CLA
CLAU		FOR	CLAS.	TIEOF	TMIS! CLAS	5° 5	EOF MI	SI
MS'I CLAS	P' AF	TE OP I	ASSI	S THE OP	ISTO	ASSI TI	OPTH	MSTO
MST OF		Lift Obling	Jet Or Kee	E. THE	OPTIME ST	SSES	THE	IMI ST
ALE OPTIMISTO			CLASSES MISTOLASSES PLIMISTOLASSES TEOPTIMISTOLASSES	CSES TH	ITHE OPTIMIST OF THE OPTIMIST	TOLA SES	THEO	TIMIS
TIMIS	CLA	ES THE OT	TIMIS . CI	AB	THE OF THE	SICLASE	15 18	OP M
EOP WI	SI CLAST		DP 1. MISTE	of ASSI	Lit. Object	MST AS	St. The	OPTH
OPTIL	MSTO	ASSES THE	OPTIM IS	TCL SSET	THE	LIM. ELCIT	SSED	THE
Primist C	in a ci	ASLASSES	PETIMIST CLASE PETIMIST CLASE	MST CLASSES	ES THE	STOPTIMIST CLASSIC	LASES	THEOL
THE OF	STOLASSE.	CLAY SS		ASSES TE	THE OPTIMIST OF THE OPTIME	SES THE OPTIMES CLASSES THE OFTEN STATE OF THE OPTIMES CLASSES	LASSES TA	S
		233, FI	RST FLOOR	LAXIVII NA	AGAR DELH	1-110092		
	CAL	LL@ 0987104404	3 www.theopt	ımıstclasses.cor	n Email: info@	theoptimistclas	ses.com	